Oxygen transfer and mixing in mechanically agitated airlift bioreactors
نویسندگان
چکیده
Gas holdup, mixing, liquid circulation and gas–liquid oxygen transfer were characterized in a large (∼1.5 m3) draft-tube airlift bioreactor agitated with Prochem® hydrofoil impellers placed in the draft-tube. Measurements were made in water and in cellulose fiber slurries that resembled broths of mycelial microfungi. Use of mechanical agitation generally enhanced mixing performance and the oxygen transfer capability relative to when mechanical agitation was not used; however, the oxygen transfer efficiency was reduced by mechanical agitation. The overall volumetric gas–liquid mass transfer coefficient declined with the increasing concentration of the cellulose fiber solids; however, the mixing time in these strongly shear thinning slurries was independent of the solids contents (0–4% w/v). Surface aeration never contributed more than 12% to the total mass transfer in air–water. © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Comparison of Different Loop Bioreactors Based on Hydrodynamic Characteristics, Mass Transfer, Energy Consumption and Biomass Production from Natural Gas
The performance of a forced-liquid Vertical Tubular Loop Bioreactor (VTLB), a forced-liquid Horizontal Tubular Loop Bioreactor (HTLB) and a gas-induced External Airlift Loop Bioreactor (EALB) were compared for production of biomass from natural gas. Hydrodynamic characteristics and mass transfer coefficients were determined as functions of design parameters, physical properties of gases as ...
متن کاملAxial inhomogeneities in steady-state dissolved oxygen in airlift bioreactors: predictive models
Models were developed for prediction and interpretation of the observed steady-state axial dissolved oxygen concentration profiles in tall airlift bioreactors. The observed concentration profiles were non-linear because of a combination of hydrodynamic and mass transport factors. The profiles were influenced mainly by the liquid-phase axial dispersion coefficient, the volumetric overall gas–liq...
متن کاملInfluence of Gas-Liquid Separator Design on Performance of Airlift Bioreactors
The performance of airlift bioreactors are closely related with their geometry, especially the gas-liquid separator design. In this study, the influence of the gas-liquid separator geometry on oxygen transfer and gas hold-up was evaluated in 10-L concentric-tube airlift bioreactor operating with distilled water and xanthan gum solution. The specific airflow rate (ɸAIR) exhibited the higher effe...
متن کاملFocusing on the Optimization for Scale up in Airlift Bioreactors and the Production of Chlamydomonas reinhardtii as a Model Microorganism
The aim of this work is to use optimization as a tool for scale up in airlift bioreactors and apply this approach to a real life process. To put this approach into practice, Chlamydomonas reinhardtii, a green microalgae, was used as a model microorganism. The effects of the design parameters on the performance of the bioreactors were monitored through the changes in mixing and circulation times...
متن کاملModel for a solid-liquid airlift two-phase partitioning bioscrubber for the treatment of BTEX
BACKGROUND: Airlift solid–liquid two-phase partitioning bioreactors (SL-TPPBs) have been shown to be effective for the treatment of gas streams containing benzene, toluene, ethylbenzene and o-xylene (BTEX). The airlift SL-TPPB is a low-energy system that utilizes a sequestering phase of solid silicone rubber beads (10%v/v) that will uptake and release large amounts of BTEX in order to maintain ...
متن کامل